Covariance Estimation#
- class jaxls.CovarianceEstimator[source]#
Abstract base class for covariance estimation.
Covariance estimators compute blocks of the covariance matrix (J^T J)^{-1}, representing uncertainty in the tangent space of estimated variables.
See
AnalyzedLeastSquaresProblem.make_covariance_estimator()for constructing covariance estimators.
- class jaxls.LinearSolverCovarianceEstimatorConfig[source]#
Configuration for covariance estimation using linear solves.
This estimator computes covariance blocks by solving (J^T J) x = e_i for each tangent dimension. It is flexible and GPU-friendly (with CG), but requires linear solves for each covariance() call.
- linear_solver: Literal['conjugate_gradient', 'dense_cholesky'] | ConjugateGradientConfig = 'conjugate_gradient'#
Linear solver for computing covariance columns.
“conjugate_gradient”: Iterative solver, GPU-friendly, uses block-Jacobi preconditioner. Converges quickly when variables are weakly correlated.
“dense_cholesky”: Direct solver, caches Cholesky factor for efficient repeated solves. Only suitable for small-medium problems.
ConjugateGradientConfig: Custom CG configuration. Note that Eisenstat-Walker tolerance parameters are ignored; only tolerance_min is used.