Lie group variables#

Built-in variable types for optimization on Lie groups.

class jaxls.SE2Var[source]#

SE2Var(id: ‘jax.Array | int’)

retract_fn(delta: ndarray | Array | Any) MatrixLieGroup | Any#

Manifold right plus. Computes T’ = T @ exp(delta).

Supports pytrees containing Lie group instances recursively; simple Euclidean addition will be performed for all other arrays.

Parameters:
  • transform (MatrixLieGroup | Any)

  • delta (ndarray | Array | Any)

Return type:

MatrixLieGroup | Any

tangent_dim: ClassVar[int] = 3#

Dimension of the tangent space.

class jaxls.SE3Var[source]#

SE3Var(id: ‘jax.Array | int’)

retract_fn(delta: ndarray | Array | Any) MatrixLieGroup | Any#

Manifold right plus. Computes T’ = T @ exp(delta).

Supports pytrees containing Lie group instances recursively; simple Euclidean addition will be performed for all other arrays.

Parameters:
  • transform (MatrixLieGroup | Any)

  • delta (ndarray | Array | Any)

Return type:

MatrixLieGroup | Any

tangent_dim: ClassVar[int] = 6#

Dimension of the tangent space.

class jaxls.SO2Var[source]#

SO2Var(id: ‘jax.Array | int’)

retract_fn(delta: ndarray | Array | Any) MatrixLieGroup | Any#

Manifold right plus. Computes T’ = T @ exp(delta).

Supports pytrees containing Lie group instances recursively; simple Euclidean addition will be performed for all other arrays.

Parameters:
  • transform (MatrixLieGroup | Any)

  • delta (ndarray | Array | Any)

Return type:

MatrixLieGroup | Any

tangent_dim: ClassVar[int] = 1#

Dimension of the tangent space.

class jaxls.SO3Var[source]#

SO3Var(id: ‘jax.Array | int’)

retract_fn(delta: ndarray | Array | Any) MatrixLieGroup | Any#

Manifold right plus. Computes T’ = T @ exp(delta).

Supports pytrees containing Lie group instances recursively; simple Euclidean addition will be performed for all other arrays.

Parameters:
  • transform (MatrixLieGroup | Any)

  • delta (ndarray | Array | Any)

Return type:

MatrixLieGroup | Any

tangent_dim: ClassVar[int] = 3#

Dimension of the tangent space.